Search results
Results From The WOW.Com Content Network
Thyroid hormones (T 4 and T 3) are produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland. The effects of T 4 in vivo are mediated via T 3 (T 4 is converted to T 3 in target tissues). T 3 is three to five times more active than T 4.
The pituitary gland secretes thyrotropin (TSH; Thyroid Stimulating Hormone) that stimulates the thyroid to secrete thyroxine (T4) and, to a lesser degree, triiodothyronine (T3). The major portion of T3, however, is produced in peripheral organs, e.g. liver, adipose tissue, glia and skeletal muscle by deiodination from
Thyroid function tests (TFTs) is a collective term for blood tests used to check the function of the thyroid. [1] TFTs may be requested if a patient is thought to suffer from hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid), or to monitor the effectiveness of either thyroid-suppression or hormone replacement therapy.
Thyroid stimulating hormone (TSH) is produced by the pituitary gland, another hormone-producing organ in the head. This in turn causes the thyroid to produce T3 and T4, which play a role in the ...
Thyroid-stimulating hormone (also known as thyrotropin, thyrotropic hormone, or abbreviated TSH) is a pituitary hormone that stimulates the thyroid gland to produce thyroxine (T 4), and then triiodothyronine (T 3) which stimulates the metabolism of almost every tissue in the body. [1]
TSH levels are determined by a classic negative feedback system in which high levels of T3 and T4 suppress the production of TSH, and low levels of T3 and T4 increase the production of TSH. TSH levels are thus often used by doctors as a screening test, where the first approach is to determine whether TSH is elevated, suppressed, or normal. [25]
T 3 is the more metabolically active hormone produced from T 4.T 4 is deiodinated by three deiodinase enzymes to produce the more-active triiodothyronine: . Type I present in liver, kidney, thyroid, and (to a lesser extent) pituitary; it accounts for 80% of the deiodination of T 4.
TSH release in turn is stimulated by thyrotropin releasing hormone (TRH), released in a pulsatile manner from the hypothalamus. [39] The thyroid hormones provide negative feedback to the thyrotropes TSH and TRH: when the thyroid hormones are high, TSH production is suppressed. This negative feedback also occurs when levels of TSH are high ...