Search results
Results From The WOW.Com Content Network
Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.
An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...
3 Properties. Toggle Properties subsection ... Examples of idempotent matrices ... The only non-singular idempotent matrix is the identity matrix; that is, if a non ...
A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A , denoted A −1 .
Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...
A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...
Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely.
This generalization of the Vandermonde matrix makes it non-singular, so that there exists a unique solution to the system of equations, and it possesses most of the other properties of the Vandermonde matrix. Its rows are derivatives (of some order) of the original Vandermonde rows.