Search results
Results From The WOW.Com Content Network
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localised wave in the ...
A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves ...
Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, [6] and transverse sound waves (shear waves) in solids. An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular to each other. Different ...
Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was considered proof of the particle theory. Nowadays, polarisation is considered a property of waves and may only manifest in transverse waves. Longitudinal waves may not be polarised.
However, longitudinal waves necessarily have only one form for a given propagation direction, rather than two polarizations like a transverse wave. Thus, longitudinal waves can not explain birefringence, in which two polarizations of light are refracted differently by a crystal. In addition, Newton rejected light as waves in a medium because ...
As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons . Each has an energy related to the frequency of the wave given by Planck's relation E = hf , where E is the energy of the photon, h is the Planck constant , 6.626 × 10 −34 J·s, and f is the frequency ...
Transverse waves are contrasted with longitudinal waves, where the oscillations occur in the direction of the wave. The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves ...