When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The transformer model has been implemented in standard deep learning frameworks such as TensorFlow and PyTorch. Transformers is a library produced by Hugging Face that supplies transformer-based architectures and pretrained models.

  3. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    The paper introduced a new deep learning architecture known as the transformer, based on the attention mechanism proposed in 2014 by Bahdanau et al. [4] It is considered a foundational [5] paper in modern artificial intelligence, as the transformer approach has become the main architecture of large language models like those based on GPT.

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset. [18]

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/api/rest_v1/page/pdf/...

    A standard Transformer architecture, showing on the left an encoder, and on the right a decoder. Note: it uses the pre-LN convention, which is different from the post-LN convention used in the original 2017 Transformer. Transformer (deep learning architecture) A transformer is a deep learning architecture that was developed

  6. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020.. Like its predecessor, GPT-2, it is a decoder-only [2] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as "attention". [3]

  7. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.

  8. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1] In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector ...

  9. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [1] [2] It learns to represent text as a sequence of vectors using self-supervised learning. It uses the encoder-only transformer architecture.