Search results
Results From The WOW.Com Content Network
Peptide bond. In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein chain.
A covalent bond forming H 2 (right) where two hydrogen atoms share the two electrons. A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms.
Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain under 30 amino acids is often identified as a peptide, rather than a protein. [1]
In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another.
However, additional molecular interactions may render the amide form less stable; the amino group is expelled instead, resulting in an ester (Ser/Thr) or thioester (Cys) bond in place of the peptide bond. This chemical reaction is called an N-O acyl shift. The ester/thioester bond can be resolved in several ways:
Amide bonds, and thus isopeptide bonds, are stabilized by resonance (electron delocalization) between the carbonyl oxygen, the carbonyl carbon, and the nitrogen atom. The bond strength of an isopeptide bond is similar to that of a peptide due to the similar bonding type. The bond strength of a peptide bond is around 300 kJ/mol, or about 70 kcal ...
A peptide bond (amide bond) is a covalent chemical bond linking two consecutive amino acid monomers along a peptide or protein chain.` Though this definition is highly cited, but there are exceptions where peptide bonds exist outside polypeptides, between an amino acid/amino-acid derivative and an non-amino acid molecule. e.g.
Reversible covalent – a chemical bond is formed, however the free energy difference separating the noncovalently-bonded reactants from bonded product is near equilibrium and the activation barrier is relatively low such that the reverse reaction which cleaves the chemical bond easily occurs; Irreversible covalent – a chemical bond is formed ...