Search results
Results From The WOW.Com Content Network
A word equation is a formal equality:= = between a pair of words and , each over an alphabet comprising both constants (c.f. ) and unknowns (c.f. ). [1] An assignment h {\displaystyle h} of constant words to the unknowns of E {\displaystyle E} is said to solve E {\displaystyle E} if it maps both sides of E {\displaystyle E} to identical words.
In solving mathematical equations, particularly linear simultaneous equations, differential equations and integral equations, the terminology homogeneous is often used for equations with some linear operator L on the LHS and 0 on the RHS. In contrast, an equation with a non-zero RHS is called inhomogeneous or non-homogeneous, as exemplified by ...
The unique pair of values a, b satisfying the first two equations is (a, b) = (1, 1); since these values also satisfy the third equation, there do in fact exist a, b such that a times the original first equation plus b times the original second equation equals the original third equation; we conclude that the third equation is linearly ...
This counterintuitive result occurs because in the case where =, multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example. In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that ...
An equation can be used to define a set, called its solution set. For example, the set of all solution pairs ( x , y ) {\displaystyle (x,y)} of the equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} forms the unit circle in analytic geometry ; therefore, this equation is called the equation of the unit circle .
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
For example, in the simple equation 3 + 2y = 8y, both sides actually contain 2y (because 8y is the same as 2y + 6y). Therefore, the 2y on both sides can be cancelled out, leaving 3 = 6y, or y = 0.5. This is equivalent to subtracting 2y from both sides. At times, cancelling out can introduce limited changes or extra solutions to an equation.
Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.