Search results
Results From The WOW.Com Content Network
An arbitrary coefficient can be placed in front of the x-value on either m or n, which causes the resulting equation to systematically "skip" through the triples. For example, consider the triple [20,21,29] , which can be calculated from the Euclid equations with values m = 5 and n = 2 .
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The most common version uses the concept of "equidecomposability" of polygons: two polygons are equidecomposable if they can be split into finitely many triangles that only differ by some isometry (in fact only by a combination of a translation and a rotation). In this case the Wallace–Bolyai–Gerwien theorem states that two polygons are ...
defining the distance between two points P = (p x, p y) and Q = (q x, q y) is then known as the Euclidean metric, and other metrics define non-Euclidean geometries. In terms of analytic geometry, the restriction of classical geometry to compass and straightedge constructions means a restriction to first- and second-order equations, e.g., y = 2 ...
A Heronian triangle is commonly defined as one with integer sides whose area is also an integer. The lengths of the sides of such a triangle form a Heronian triple (a, b, c) for a ≤ b ≤ c. Every Pythagorean triple is a Heronian triple, because at least one of the legs a, b must be even in a Pythagorean triple, so the area ab/2 is an integer.
A monotone polygon can be split into two monotone chains. A polygon that is monotone with respect to the y-axis is called y-monotone. A monotone polygon with n vertices can be triangulated in O(n) time. Assuming a given polygon is y-monotone, the greedy algorithm begins by walking on one chain of the polygon from top to bottom while adding ...
Whereas Roberts's theorem concerns the fewest possible triangles made by a given number of lines, the related Kobon triangle problem concerns the largest number possible. [3] The two problems differ already for n = 5 {\displaystyle n=5} , where Roberts's theorem guarantees that three triangles will exist, but the solution to the Kobon triangle ...
[5] The subdivision of the polygon into triangles forms a planar graph, and Euler's formula + = gives an equation that applies to the number of vertices, edges, and faces of any planar graph. The vertices are just the grid points of the polygon; there are = + of them. The faces are the triangles of the subdivision, and the single region of the ...