Search results
Results From The WOW.Com Content Network
The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes ...
= molar mass of Earth's air: 0.0289644 kg/mol; The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3.
The concept of potential temperature applies to any stratified fluid. It is most frequently used in the atmospheric sciences and oceanography. [2] The reason that it is used in both fields is that changes in pressure can result in warmer fluid residing under colder fluid – examples being dropping air temperature with altitude and increasing water temperature with depth in very deep ocean ...
is mixing ratio of water vapor mass per mass [kg/kg] (sometimes value is given in [g/kg] [4] and that should be divided by 1000). A little more theoretical formula is commonly used in literature like Holton (1972) [5] when theoretical explanation is important:
The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km (2 to 5 °F/1000 ft ), as obtained from the International Civil ...
Note that for different gasses, the value of H n differs, according to the molar mass M: It is 10.9 for nitrogen, 9.2 for oxygen and 6.3 for carbon dioxide. The theoretical value for water vapor is 19.6, but due to vapor condensation the water vapor density dependence is highly variable and is not well approximated by this formula.
An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth.The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2]
T = mean atmospheric temperature in kelvins = 250 K [4] for Earth m = mean mass of a molecule M = mean molar mass of atmospheric particles = 0.029 kg/mol for Earth g = acceleration due to gravity at the current location. The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere.