Search results
Results From The WOW.Com Content Network
Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
The Euler function may be expressed as a q-Pochhammer symbol: = (;). The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding
However, the coefficient of x 12 is −1 because there are seven ways to partition 12 into an even number of distinct parts, but there are eight ways to partition 12 into an odd number of distinct parts, and 7 − 8 = −1. This interpretation leads to a proof of the identity by canceling pairs of matched terms (involution method). [1]
This mathematical term forms part of an identity, a special case of Euler's formula, written = + (). Setting x {\displaystyle x} to a value of π {\displaystyle \pi } , as with the above term, Euler's formula reduces to a famous equation relating seven important mathematical symbols (and none that are unimportant!), namely e i π + 1 ...
In particular, when =, they are called Euler sums or alternating multiple zeta values, and when = they are simply called multiple zeta values. Multiple zeta values are often written
Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.
Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).