When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  3. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [40] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.

  4. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n is given by Euler's totient function φ (n) (sequence A000010 in the OEIS). And then, Euler's theorem says that a φ (n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a that is congruent to 1 modulo n is called the multiplicative order of a modulo n.

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    Euler's theorem is a generalization of Fermat's little theorem: For any modulus n and any integer a coprime to n, one has (), where φ(n) denotes Euler's totient function (which counts the integers from 1 to n that are coprime to n).

  8. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Because of its trivial nature, the case of congruences modulo 1 is generally ignored and some authors choose not to include the case of n = 1 in theorem statements. Modulo 2 there is only one coprime congruence class, [1], so ( Z / 2 Z ) × ≅ C 1 {\displaystyle (\mathbb {Z} /2\mathbb {Z} )^{\times }\cong \mathrm {C} _{1}} is the trivial group .

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    As an alternative to the extended Euclidean algorithm, Euler's theorem may be used to compute modular inverses. [11] According to Euler's theorem, if a is coprime to m, that is, gcd(a, m) = 1, then (), where is Euler's totient function.