When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    Confusion matrix is not limited to binary classification and can be used in multi-class classifiers as well. The confusion matrices discussed above have only two conditions: positive and negative. For example, the table below summarizes communication of a whistled language between two speakers, with zero values omitted for clarity. [20]

  3. Fowlkes–Mallows index - Wikipedia

    en.wikipedia.org/wiki/Fowlkes–Mallows_Index

    The Fowlkes–Mallows index is an external evaluation method that is used to determine the similarity between two clusterings (clusters obtained after a clustering algorithm), and also a metric to measure confusion matrices. This measure of similarity could be either between two hierarchical clusterings or a clustering and a benchmark ...

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...

  5. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  6. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  7. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    There are also two types of incorrect classifications and they are represented by 01 and 10. They are called false positives (FP) when the actual value is 0 and the model predicts a 1; and false negatives (FN) when the target is 1 and the model predicts a 0. The counts of TP, TN, FP, and FN are usually kept on a table known as the confusion matrix.

  8. Talk:Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Talk:Confusion_matrix

    A matrix showing the predicted and actual classifications. A confusion matrix is of size l × l, where l is the number of different label values. The following confusion matrix is for l = 2: followed by the matrix. It does not, however, state that that is the standard convention, the matrix could be merely an example.

  9. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    For example, deciding on whether an image is showing a banana, an orange, or an apple is a multiclass classification problem, with three possible classes (banana, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple).