Ads
related to: algebraic formula for distance
Search results
Results From The WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line.
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra.The expression + + in the definition of a plane is a dot product (,,) (,,), and the expression + + appearing in the solution is the squared norm | (,,) |.
The distance formula in Cartesian coordinates is derived from the Pythagorean theorem. [36] If (x 1, y 1) and (x 2, y 2) are points in the plane, then the distance between them, also called the Euclidean distance, is given by + ().
The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry . The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance.
The distance formula on the plane follows from the Pythagorean theorem. In analytic geometry, geometric notions such as distance and angle measure are defined using formulas . These definitions are designed to be consistent with the underlying Euclidean geometry .
Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [ 1 ] [ 2 ] [ 3 ] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.
A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.