When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    In eukaryotes, NADH is the most important electron donor. The associated electron transport chain is NADH → Complex I → Q → Complex III → cytochrome c → Complex IV → O 2 where Complexes I, III and IV are proton pumps, while Q and cytochrome c are mobile electron carriers. The electron acceptor for this process is molecular oxygen.

  3. Respiratory complex I - Wikipedia

    en.wikipedia.org/wiki/Respiratory_complex_I

    NAD + to NADH. FMN to FMNH 2. CoQ to CoQH 2.. Complex I is the first enzyme of the mitochondrial electron transport chain.There are three energy-transducing enzymes in the electron transport chain - NADH:ubiquinone oxidoreductase (complex I), Coenzyme Q – cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV). [1]

  4. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  5. NADH dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/NADH_dehydrogenase

    NADH + H + + acceptor ⇌ NAD + + reduced acceptor. NADH dehydrogenase is a flavoprotein that contains iron-sulfur centers. NADH dehydrogenase is used in the electron transport chain for generation of ATP. The EC term NADH dehydrogenase (quinone) (EC 1.6.5.11) is defined for NADH dehydrogenases that use a quinone (excluding ubiquinone) as the ...

  6. P/O ratio - Wikipedia

    en.wikipedia.org/wiki/P/O_ratio

    The H+/2e − ratios of the three major respiratory complexes are generally agreed to be 4, 4, and 2 for Complexes I, III, and IV respectively. [7] The H + /O ratio thus depends whether the substrate electrons enter at the level of NADH (passing through all three for 10 H + /2e −) or ubiquinol (passing through only complexes III and IV for 6H ...

  7. MT-ND5 - Wikipedia

    en.wikipedia.org/wiki/MT-ND5

    MT-ND5 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 5 protein (ND5). [5] The ND5 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. [6]

  8. MT-ND2 - Wikipedia

    en.wikipedia.org/wiki/MT-ND2

    MT-ND2 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 2 (ND2) protein. [5] The ND2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. [6]

  9. NDUFB8 - Wikipedia

    en.wikipedia.org/wiki/NDUFB8

    [5] [6] NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8 is an accessory subunit of the NADH dehydrogenase (ubiquinone) complex, located in the mitochondrial inner membrane. It is also known as Complex I and is the largest of the five complexes of the electron transport chain. [7]