When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    A function cannot be written as a Taylor series centred at a singularity; in these cases, one can often still achieve a series expansion if one allows also negative powers of the variable x; see Laurent series. For example, f (x) = e −1/x 2 can be written as a Laurent series.

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  4. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence. The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals.

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  8. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In addition to Euler's identity, it can be helpful to make judicious use of the real parts of complex expressions. For example, consider the integral For example, consider the integral ∫ e x cosx d x . {\displaystyle \int e^{x}\cos x\,dx.}

  9. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Since the function cosh x is even, only even exponents for x occur in its Taylor series. The sum of the sinh and cosh series is the infinite series expression of the exponential function. The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function.