When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The Lagrangian dual problem is obtained by forming the Lagrangian of a minimization problem by using nonnegative Lagrange multipliers to add the constraints to the objective function, and then solving for the primal variable values that minimize the original objective function. This solution gives the primal variables as functions of the ...

  4. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    This procedure does increase the number of equations to solve compared to Newton's laws, from 3N to 3N + C, because there are 3N coupled second-order differential equations in the position coordinates and multipliers, plus C constraint equations. However, when solved alongside the position coordinates of the particles, the multipliers can yield ...

  5. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables (x, s) with its set of KKT vectors (optimal Lagrange multipliers) being (v, λ). In that case,

  6. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.

  7. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    where is a Lagrange multiplier or adjoint state variable and , is an inner product on . The method of Lagrange multipliers states that a solution to the problem has to be a stationary point of the lagrangian, namely

  8. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...

  9. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    This problem involved finding the existence of Lagrange multipliers for general linear programs over a continuum of variables, each bounded between zero and one, and satisfying linear constraints expressed in the form of Lebesgue integrals. Dantzig later published his "homework" as a thesis to earn his doctorate.