When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    One takes as estimates of α and β the values that minimize the sum of squares of residuals, i.e., the sum of squares of the differences between the observed y-value and the fitted y-value. To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y -value for each of one or more of the ...

  3. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    For a meromorphic function, with a finite set of singularities within a positively oriented simple closed curve which does not pass through any singularity, the value of the contour integral is given according to residue theorem, as: = = ⁡ (,) ⁡ (,). where ⁡ (,), the winding number, is if is in the interior of and if not, simplifying to ...

  4. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  5. Residual (numerical analysis) - Wikipedia

    en.wikipedia.org/wiki/Residual_(numerical_analysis)

    When one does not know the exact solution, one may look for the approximation with small residual. Residuals appear in many areas in mathematics, including iterative solvers such as the generalized minimal residual method, which seeks solutions to equations by systematically minimizing the residual.

  6. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  7. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  8. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Using matrix notation, the sum of squared residuals is given by S ( β ) = ( y − X β ) T ( y − X β ) . {\displaystyle S(\beta )=(y-X\beta )^{T}(y-X\beta ).} Since this is a quadratic expression, the vector which gives the global minimum may be found via matrix calculus by differentiating with respect to the vector β {\displaystyle \beta ...

  9. Method of mean weighted residuals - Wikipedia

    en.wikipedia.org/wiki/Method_of_mean_weighted...

    The method of mean weighted residuals solves (,,, …,) = by imposing that the degrees of freedom are such that: ((,,, …,),) =is satisfied. Where the inner product (,) is the standard function inner product with respect to some weighting function () which is determined usually by the basis function set or arbitrarily according to whichever weighting function is most convenient.