Ad
related to: toughest calculus question examples in real life about intersecting lines
Search results
Results From The WOW.Com Content Network
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
Justifying this calculus was the content of Hilbert's 15th problem, and was also the major topic of the 20 century algebraic geometry. [ 1 ] [ 2 ] In the course of securing the foundations of intersection theory, Van der Waerden and André Weil [ 3 ] [ 4 ] related the problem to the determination of the cohomology ring H*(G/P) of a flag ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Elementary Calculus: An Infinitesimal Approach; Nonstandard calculus; Infinitesimal; Archimedes' use of infinitesimals; For further developments: see list of real analysis topics, list of complex analysis topics, list of multivariable calculus topics
In particular it is important to assure that for two given line segments, a new line segment can be constructed, such that its length equals the product of lengths of the other two. Similarly one needs to be able to construct, for a line segment of length , a new line segment of length . The intercept theorem can be used to show that for both ...
4. Problem of the straight line as the shortest distance between two points. 5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group. 6. Mathematical treatment of the axioms of physics. 7. Irrationality and transcendence of certain numbers. 8.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...