Search results
Results From The WOW.Com Content Network
In chemistry, a strong electrolyte is a solute that completely, or almost completely, ionizes or dissociates in a solution. These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution , is a good conductor of electricity.
An electrolyte in a solution may be described as "concentrated" if it has a high concentration of ions, or "dilute" if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak.
The higher the percentage, the stronger the electrolyte. Thus, even if a substance is not very soluble, but does dissociate completely into ions, the substance is defined as a strong electrolyte. Similar logic applies to a weak electrolyte. Strong acids and bases are good examples, such as HCl and H 2 SO 4. These will all exist as ions in an ...
Strong salts or strong electrolyte salts are chemical salts composed of strong electrolytes. These salts dissociate completely or almost completely in water. They are generally odorless and nonvolatile. Strong salts start with Na__, K__, NH 4 __, or they end with __NO 3, __ClO 4, or __CH 3 COO. Most group 1 and 2 metals form strong salts.
For strong electrolytes, such as salts, strong acids and strong bases, the molar conductivity depends only weakly on concentration. On dilution there is a regular increase in the molar conductivity of strong electrolyte, due to the decrease in solute–solute interaction. Based on experimental data Friedrich Kohlrausch (around the year 1900 ...
m is known as the limiting molar conductivity, K is an empirical constant and c is the electrolyte concentration. (Limiting here means "at the limit of the infinite dilution".) In effect, the observed conductivity of a strong electrolyte becomes directly proportional to concentration, at sufficiently low concentrations i.e. when
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.