Search results
Results From The WOW.Com Content Network
In probability theory, an outcome is a possible result of an experiment or trial. [1] Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment).
The theory continues with a second concept, based on the observation that people attribute excessive weight to events with low probabilities and insufficient weight to events with high probability. For example, individuals may unconsciously treat an outcome with a probability of 99% as if its probability were 95%, and an outcome with ...
Classical definition: Initially the probability of an event to occur was defined as the number of cases favorable for the event, over the number of total outcomes possible in an equiprobable sample space: see Classical definition of probability. For example, if the event is "occurrence of an even number when a dice is rolled", the probability ...
In studies of the bias, options are presented in terms of the probability of either losses or gains. While differently expressed, the options described are in effect identical. Gain and loss are defined in the scenario as descriptions of outcomes, for example, lives lost or saved, patients treated or not treated, monetary gains or losses. [2]
The classical definition of probability works well for situations with only a finite number of equally-likely outcomes. This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A , the probability of ...
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
The neglect of probability, a type of cognitive bias, is the tendency to disregard probability when making a decision under uncertainty and is one simple way in which people regularly violate the normative rules for decision making. Small risks are typically either neglected entirely or hugely overrated.
Both examples indicate probability-outcome dependence, as based on affect-rich outcomes, which changes the shape of PT's S-shaped curve. In Experiment 2, the size of the affect-rich jump in the weighting function is much greater ($500 – $450 = $50) than the size of the affect-poor jump ($500 – $478 = $22). [ 2 ]