When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Wavelet_transform

    Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function. [ 13 ]

  3. Gabor wavelet - Wikipedia

    en.wikipedia.org/wiki/Gabor_wavelet

    The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.

  4. Daubechies wavelet - Wikipedia

    en.wikipedia.org/wiki/Daubechies_wavelet

    The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; in fact, they are not possible to write down in closed form. The graphs below are generated using the cascade algorithm, a numeric technique consisting of inverse-transforming [1 0 0 0 0 ... ] an appropriate number of times.

  5. Wavelet - Wikipedia

    en.wikipedia.org/wiki/Wavelet

    The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...

  6. Lifting scheme - Wikipedia

    en.wikipedia.org/wiki/Lifting_scheme

    Lifting sequence consisting of two steps. The lifting scheme is a technique for both designing wavelets and performing the discrete wavelet transform (DWT). In an implementation, it is often worthwhile to merge these steps and design the wavelet filters while performing the wavelet transform.

  7. Morlet wavelet - Wikipedia

    en.wikipedia.org/wiki/Morlet_wavelet

    The Morlet wavelet filtering process involves transforming the sensor's output signal into the frequency domain. By convolving the signal with the Morlet wavelet, which is a complex sinusoidal wave with a Gaussian envelope, the technique allows for the extraction of relevant frequency components from the signal.

  8. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).

  9. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the ...