When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

  3. Bhattacharyya distance - Wikipedia

    en.wikipedia.org/wiki/Bhattacharyya_distance

    In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient , which is a measure of the amount of overlap between two statistical samples or populations.

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  5. Jensen–Shannon divergence - Wikipedia

    en.wikipedia.org/wiki/Jensen–Shannon_divergence

    In probability theory and statistics, the Jensen–Shannon divergence, named after Johan Jensen and Claude Shannon, is a method of measuring the similarity between two probability distributions. It is also known as information radius ( IRad ) [ 1 ] [ 2 ] or total divergence to the average . [ 3 ]

  6. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    Total variation distance is half the absolute area between the two curves: Half the shaded area above. In probability theory, the total variation distance is a statistical distance between probability distributions, and is sometimes called the statistical distance, statistical difference or variational distance.

  7. Fisher information metric - Wikipedia

    en.wikipedia.org/wiki/Fisher_information_metric

    In information geometry, the Fisher information metric [1] is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions. [2] The metric is interesting in several aspects.

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.

  9. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .