Search results
Results From The WOW.Com Content Network
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
The first-derivative test examines a function's monotonic properties (where the function is increasing or decreasing), focusing on a particular point in its domain.If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point.
Similarly, the function has a global (or absolute) minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X. The value of the function at a maximum point is called the maximum value of the function, denoted (()), and the value of the function at a minimum point is called the minimum value of the function, (denoted (()) for clarity ...
At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)
If f(x) = 0 for all x ≤ a and f(x) = 1 for all x ≥ b, then the function can be taken to represent a cumulative distribution function for a random variable which is neither a discrete random variable (since the probability is zero for each point) nor an absolutely continuous random variable (since the probability density is zero everywhere ...
We conclude that the function is the value of the minimizing integral as a function of the upper end point. That is, when a family of minimizing curves is constructed, the values of the optical length satisfy the characteristic equation corresponding the wave equation.
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
Let ≤ be a partial order over a set X and let f: X → X be a function over X. Then a prefixed point (also spelled pre-fixed point, sometimes shortened to prefixpoint or pre-fixpoint) [citation needed] of f is any p such that f(p) ≤ p. Analogously, a postfixed point of f is any p such that p ≤ f(p). [3] The opposite usage occasionally ...