Search results
Results From The WOW.Com Content Network
The "cosmological constant" is a constant term that can be added to Einstein field equations of general relativity.If considered as a "source term" in the field equation, it can be viewed as equivalent to the mass of empty space (which conceptually could be either positive or negative), or "vacuum energy".
[6] [7] [8] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model. According to quantum field theory (QFT), which underlies modern particle physics, empty space is defined by the vacuum state, which is composed of a collection of quantum fields.
Instead of the general notion that a void is a region of space with a low cosmic mean density; a hole in the distribution of galaxies, it defines voids to be regions in which matter is escaping; which corresponds to the dark energy equation of state, w.
Dark energy is one of the greatest mysteries in science today. One of the simplest explanations is that it is a “cosmological constant” – a result of the energy of empty space itself – an ...
This would indicate empty space exerted some form of negative pressure or energy. There is no natural candidate for what might cause what has been called dark energy but the current best guess is that it is the zero-point energy of the vacuum, but this guess is known to be off by 120 orders of magnitude. [138]
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [7] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...
The effect on cosmology of the dark energy that these models describe is given by the dark energy's equation of state, which varies depending upon the theory. The nature of dark energy is one of the most challenging problems in cosmology. A better understanding of dark energy is likely to solve the problem of the ultimate fate of the universe.
The physical nature of dark energy is at present unknown," Huterer said. The new findings appear to corroborate the current standard model of cosmology that includes the theory of general relativity.