When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    k = 1 is the tangent line to the right of the circles looking from c 1 to c 2. k = −1 is the tangent line to the right of the circles looking from c 2 to c 1. The above assumes each circle has positive radius. If r 1 is positive and r 2 negative then c 1 will lie to the left of each line and c 2 to the right, and the two tangent lines will ...

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().

  4. Witch of Agnesi - Wikipedia

    en.wikipedia.org/wiki/Witch_of_Agnesi

    The witch is tangent to its defining circle at one of the two defining points, and asymptotic to the tangent line to the circle at the other point. It has a unique vertex (a point of extreme curvature) at the point of tangency with its defining circle, which is also its osculating circle at that point.

  5. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz.

  6. Tangential angle - Wikipedia

    en.wikipedia.org/wiki/Tangential_angle

    In polar coordinates, the polar tangential angle is defined as the angle between the tangent line to the curve at the given point and ray from the origin to the point. [6] If ψ denotes the polar tangential angle, then ψ = φ − θ, where φ is as above and θ is, as usual, the polar angle.

  7. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Tangent line at (a, f(a)) In mathematics , a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function ). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.

  8. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    These are an infinite family of circles tangent to the -axis of the Cartesian coordinate system at its rational points. Each fraction / (in lowest terms) has a circle tangent to the line at the point (/,) with curvature . Three of these curvatures, together with the zero curvature of the axis, meet the conditions of Descartes' theorem whenever ...

  9. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    Implicit differentiation gives the formula for the slope of the tangent line to this curve to be [3] =. Using either one of the polar representations above, the area of the interior of the loop is found to be 3 a 2 / 2 {\displaystyle 3a^{2}/2} .