Search results
Results From The WOW.Com Content Network
Cerebral perfusion pressure, or CPP, is the net pressure gradient causing cerebral blood flow to the brain (brain perfusion).It must be maintained within narrow limits because too little pressure could cause brain tissue to become ischemic (having inadequate blood flow), and too much could raise intracranial pressure (ICP).
The body's response to a fall in CPP is to raise systemic blood pressure and dilate cerebral blood vessels. This results in increased cerebral blood volume, which increases ICP, lowering CPP further and causing a vicious cycle. This results in widespread reduction in cerebral flow and perfusion, eventually leading to ischemia and brain infarction.
Cerebral blood flow is determined by a number of factors, such as viscosity of blood, how dilated blood vessels are, and the net pressure of the flow of blood into the brain, known as cerebral perfusion pressure, which is determined by the body's blood pressure. Cerebral perfusion pressure (CPP) is defined as the mean arterial pressure (MAP ...
Unmonitored ICP leads to brain damage by global hypoxic ischemic injury due to reduction in cerebral perfusion pressure (CPP) which is found by subtracting the ICP from mean arterial pressure (MAP), cerebral blood flow, and mechanical compression of brain tissue due to compartmentalized ICP gradients. [2]
The quantification of cerebral autoregulation always involves variation seen in cerebral blood flow in relation to changes in blood pressure. This blood pressure variation can either be evoked or spontaneous. Evoked blood pressure changes can be the result of: releasing leg cuffs that were inflated above systolic pressure; breathing at a fixed rate
If a sufficient flow of oxygen is met and the resistance in the coronary circulation rises (perhaps due to vasoconstriction), then the coronary perfusion pressure (CPP) increases proportionally, to maintain the same flow. In this way, the same flow through the coronary circulation is maintained over a range of pressures.
This relationship is dictated by the Monro-Kellie doctrine, which states that as the brain swells, intracranial pressure (ICP) rises and cerebral perfusion decreases. As the brain swelling exceeds a certain point called the critical closing pressure (CrCP), the arterioles feeding the brain oxygen-rich blood will collapse, and the brain becomes ...
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison to the average population.