When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .

  3. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...

  4. Parabolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Parabolic_partial...

    A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...

  5. Upwind scheme - Wikipedia

    en.wikipedia.org/wiki/Upwind_scheme

    In computational physics, the term advection scheme refers to a class of numerical discretization methods for solving hyperbolic partial differential equations. In the so-called upwind schemes typically, the so-called upstream variables are used to calculate the derivatives in a flow field. That is, derivatives are estimated using a set of data ...

  6. Discontinuous Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Discontinuous_Galerkin_method

    In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations.They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications.

  7. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with a numerical dissipation term of 1/2.

  8. FTCS scheme - Wikipedia

    en.wikipedia.org/wiki/FTCS_scheme

    In numerical analysis, the FTCS (forward time-centered space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. [1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation.

  9. Category:Partial differential equations - Wikipedia

    en.wikipedia.org/wiki/Category:Partial...

    Hyperbolic partial differential equations (10 P) I. Integrable systems (2 C, 41 P) M. ... Parabolic partial differential equations (17 P) PDE theorists (142 P)