Search results
Results From The WOW.Com Content Network
The hydrogen atoms in the ammonium ion can be substituted with an alkyl group or some other organic group to form a substituted ammonium ion (IUPAC nomenclature: aminium ion). Depending on the number of organic groups, the ammonium cation is called a primary , secondary , tertiary , or quaternary .
An ammine ligand bound to a metal ion is markedly more acidic than a free ammonia molecule, although deprotonation in aqueous solution is still rare. One example is the reaction of mercury(II) chloride with ammonia (Calomel reaction) where the resulting mercuric amidochloride is highly insoluble. HgCl 2 + 2 NH 3 → HgCl(NH 2) + [NH 4]Cl
Amine. In chemistry, amines (/ ə ˈ m iː n, ˈ æ m iː n /, [1] [2] UK also / ˈ eɪ m iː n / [3]) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.Formally, amines are derivatives of ammonia (NH 3 (in which the bond angle between the nitrogen and hydrogen is 107°), wherein one or more hydrogen atoms have been replaced by a substituent such as an ...
Quaternary ammonium cation. The R groups may be the same or different alkyl or aryl groups. Also, the R groups may be connected. In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR 4] +, where R is an alkyl group, an aryl group [1] or organyl group.
Water hydrolyzes formamide to give ammonium formate, which acts as a reducing agent and adds on to the N-formyl derivative. Hydride shift occurs, resulting in loss of carbon dioxide. An ammonium ion is added forming an imine and releasing ammonia. The imine goes through hydrolysis to form the amine, which is depicted in the scheme below.
In the Mannich reaction, primary or secondary amines or ammonia react with formaldehyde to form a Schiff base. Tertiary amines lack an N–H proton and so do not react. The Schiff base can react with α-CH-acidic compounds (nucleophiles) that include carbonyl compounds, nitriles, acetylenes, aliphatic nitro compounds, α-alkyl-pyridines or imines.
Functional groups can also be charged, e.g. in carboxylate salts (−COO −), which turns the molecule into a polyatomic ion or a complex ion. Functional groups binding to a central atom in a coordination complex are called ligands. Complexation and solvation are also caused by specific interactions of functional groups.
Upon hydrolysis, an amide converts into a carboxylic acid and an amine or ammonia (which in the presence of acid are immediately converted to ammonium salts). One of the two oxygen groups on the carboxylic acid are derived from a water molecule and the amine (or ammonia) gains the hydrogen ion. The hydrolysis of peptides gives amino acids.