When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bracket (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Bracket_(mathematics)

    The notation [,) is used to indicate an interval from a to c that is inclusive of —but exclusive of . That is, [ 5 , 12 ) {\displaystyle [5,12)} would be the set of all real numbers between 5 and 12, including 5 but not 12.

  3. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [4] [5] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [a, a]). [6] Some authors include the empty set in this definition.

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    The notation / is also used, and is less ambiguous. Denotes the set of rational numbers (fractions of two integers). It is often denoted also by . Denotes the set of p-adic numbers, where p is a prime number.

  5. Unit interval - Wikipedia

    en.wikipedia.org/wiki/Unit_interval

    In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its standard orientation goes from 0 to 1. The unit interval is a totally ordered set and a complete lattice (every subset of the unit interval has a supremum and an infimum).

  6. Cantor set - Wikipedia

    en.wikipedia.org/wiki/Cantor_set

    A closed set in which every point is an accumulation point is also called a perfect set in topology, while a closed subset of the interval with no interior points is nowhere dense in the interval. Every point of the Cantor set is also an accumulation point of the complement of the Cantor set.

  7. Derived set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Derived_set_(mathematics)

    In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of . It is usually denoted by S ′ . {\displaystyle S'.} The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line .

  8. Set-builder notation - Wikipedia

    en.wikipedia.org/wiki/Set-builder_notation

    Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...

  9. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...