When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weak interaction - Wikipedia

    en.wikipedia.org/wiki/Weak_interaction

    In fact, the force is termed weak because its field strength over any set distance is typically several orders of magnitude less than that of the electromagnetic force, which itself is further orders of magnitude less than the strong nuclear force. The weak interaction is the only fundamental interaction that breaks parity symmetry, and ...

  3. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...

  4. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...

  5. Strong interaction - Wikipedia

    en.wikipedia.org/wiki/Strong_interaction

    In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is a fundamental interaction that confines quarks into protons, neutrons, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

  6. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The strong force overpowers the electrostatic repulsion of protons and quarks in nuclei and hadrons respectively, at their respective scales. While quarks are bound in hadrons by the fundamental strong interaction, which is mediated by gluons, nucleons are bound by an emergent phenomenon termed the residual strong force or nuclear force.

  7. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The conversion of protons to neutrons is the result of another nuclear force, known as the weak (nuclear) force. The weak force, like the strong force, has a short range, but is much weaker than the strong force. The weak force tries to make the number of neutrons and protons into the most energetically stable configuration.

  8. Neutral current - Wikipedia

    en.wikipedia.org/wiki/Neutral_current

    Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson . The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force , and led to the ...

  9. Quantum hadrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_hadrodynamics

    An important phenomenon in quantum hadrodynamics is the nuclear force, or residual strong force. It is the force operating between those hadrons which are nucleons – protons and neutrons – as it binds them together to form the atomic nucleus. The bosons which mediate the nuclear force are three types of mesons: pions, rho mesons and omega ...