Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system .
The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.
Definition: [7] The midpoint of two elements x and y in a vector space is the vector 1 / 2 (x + y). Theorem [ 7 ] [ 8 ] — Let A : X → Y be a surjective isometry between normed spaces that maps 0 to 0 ( Stefan Banach called such maps rotations ) where note that A is not assumed to be a linear isometry.
This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the combination is itself just a reflection in a parallel line. The identity isometry, defined by I(p) = p for all points p is a special case of a translation, and also a special case of a rotation. It is the ...
Glide reflections with translation by the same distance are in the same class. In 3D: Inversions with respect to all points are in the same class. Rotations by the same angle are in the same class. Rotations about an axis combined with translation along that axis are in the same class if the angle is the same and the translation distance is the ...
In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations.
In mathematics, a translation plane is a projective plane which admits a certain group of symmetries (described below). Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via ...
Thus inversive geometry, a larger study than grade school transformation geometry, is usually reserved for college students. Experiments with concrete symmetry groups make way for abstract group theory. Other concrete activities use computations with complex numbers, hypercomplex numbers, or matrices to express