Search results
Results From The WOW.Com Content Network
The sensible heat of a thermodynamic process may be calculated as the product of the body's mass (m) with its specific heat capacity (c) and the change in temperature (): =. Joule described sensible heat as the energy measured by a thermometer. Sensible heat and latent heat are not special forms of energy. Rather, they describe exchanges of ...
Heat transfer can either occur as sensible heat (differences in temperature without evapotranspiration) or latent heat (the energy required during a change of state, without a change in temperature). The Bowen ratio is generally used to calculate heat lost (or gained) in a substance; it is the ratio of energy fluxes from one state to another by ...
The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.
Heat flux can be directly measured using a single heat flux sensor located on either surface or embedded within the material. Using this method, knowing the values of k and x of the material are not required. The multi-dimensional case is similar, the heat flux goes "down" and hence the temperature gradient has the negative sign:
However, one needs to select if the heat flux is based on the pipe inner or the outer diameter. If the heat flux is based on the inner diameter of the pipe, and if the pipe wall is thin compared to this diameter, the curvature of the wall has a negligible effect on heat transfer. In this case, the pipe wall can be approximated as a flat plane ...
is the outgoing heat transfer from the area d ω {\displaystyle d\omega } is the solid angle subtended by the infinitesimal 'target' (or 'aperture') area d A a {\displaystyle dA_{a}} θ {\displaystyle \theta } is the angle between the source area normal vector and the line-of-sight between the source and the target areas.
On-site heat flux measurements are often focused on testing the thermal transport properties of for example pipes, tanks, ovens and boilers, by calculating the heat flux q or the apparent thermal conductivity. The real-time energy gain or loss is measured under pseudo steady state-conditions with minimal disturbance by a heat flux transducer ...
Energy flux is the rate of transfer of energy through a surface. The quantity is defined in two different ways, depending on the context: Total rate of energy transfer (not per unit area); [1] SI units: W = J⋅s −1. Specific rate of energy transfer (total normalized per unit area); [2] SI units: W⋅m −2 = J⋅m −2 ⋅s −1: