Search results
Results From The WOW.Com Content Network
An infinite set of vectors is linearly independent if every nonempty finite subset is linearly independent. Conversely, an infinite set of vectors is linearly dependent if it contains a finite subset that is linearly dependent, or equivalently, if some vector in the set is a linear combination of other vectors in the set.
In signal processing, it is common to represent signals as vectors in a Hilbert space. In this interpretation, a vector expressed as a linear combination of the frame vectors is a redundant signal. Representing a signal strictly with a set of linearly independent vectors may not always be the most compact form. [13]
A linearly independent set L is a basis if and only if it is maximal, that is, it is not a proper subset of any linearly independent set. If V is a vector space of dimension n, then: A subset of V with n elements is a basis if and only if it is linearly independent. A subset of V with n elements is a basis if and only if it is a spanning set of V.
A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of vectors is linearly independent if the only way to express the zero vector as a linear combination of elements of S is to take zero for every coefficient a i. A set of vectors that spans a vector space is called a spanning set or generating set.
The elements of a subset G of a F-vector space V are said to be linearly independent if no element of G can be written as a linear combination of the other elements of G. Equivalently, they are linearly independent if two linear combinations of elements of G define the same element of V if and only if they have the same coefficients. Also ...
If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the 0 vector on the th step, assuming that is a linear combination of , …,. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1.
Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, [1] and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming.
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.