Search results
Results From The WOW.Com Content Network
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:
The weak maximum principle, in this setting, says that for any open precompact subset M of the domain of u, the maximum of u on the closure of M is achieved on the boundary of M. The strong maximum principle says that, unless u is a constant function, the maximum cannot also be achieved anywhere on M itself.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
As an example, both unnormalised and normalised sinc functions above have of {0} because both attain their global maximum value of 1 at x = 0. The unnormalised sinc function (red) has arg min of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at x = ±4.49.
Smoothmax of (−x, x) versus x for various parameter values. Very smooth for =0.5, and more sharp for =8. For large positive values of the parameter >, the following formulation is a smooth, differentiable approximation of the maximum function. For negative values of the parameter that are large in absolute value, it approximates the minimum.
The number 4,294,967,295, equivalent to the hexadecimal value FFFFFFFF 16, is the maximum value for a 32-bit unsigned integer in computing. [6] It is therefore the maximum value for a variable declared as an unsigned integer (usually indicated by the unsigned codeword) in many programming languages running on modern computers. The presence of ...