When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A planar graph cannot contain K 3,3 as a minor; an outerplanar graph cannot contain K 3,2 as a minor (These are not sufficient conditions for planarity and outerplanarity, but necessary). Conversely, every nonplanar graph contains either K 3,3 or the complete graph K 5 as a minor; this is Wagner's theorem. [9] Every complete bipartite graph.

  3. Kuratowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Kuratowski's_theorem

    A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...

  4. Multipartite graph - Wikipedia

    en.wikipedia.org/wiki/Multipartite_graph

    In graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the ...

  5. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .

  6. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph K 5 nor the complete bipartite graph K 3,3. [1]

  7. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    A complete graph with n nodes represents the edges of an (n – 1)-simplex. Geometrically K 3 forms the edge set of a triangle, K 4 a tetrahedron, etc. The Császár polyhedron, a nonconvex polyhedron with the topology of a torus, has the complete graph K 7 as its skeleton. [15] Every neighborly polytope in four or more dimensions also has a ...

  8. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K 5 or the complete bipartite graph K 3,3 (utility graph). A subdivision of a graph results from inserting vertices into edges (for example, changing an edge • —— • to • — • — • ) zero or more times.

  9. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    All non-isomorphic graphs on 3 vertices and their chromatic polynomials, clockwise from the top. The independent 3-set: k 3. An edge and a single vertex: k 2 (k – 1). The 3-path: k(k – 1) 2. The 3-clique: k(k – 1)(k – 2). The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics.