When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    In this algorithm, one recursively draws a line to split the vertices into two sets. The Delaunay triangulation is computed for each set, and then the two sets are merged along the splitting line. Using some clever tricks, the merge operation can be done in time O( n ) , so the total running time is O( n log n ) .

  3. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.

  4. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    The local (non-unit) basis vector is b 1 (notated h 1 above, with b reserved for unit vectors) and it is built on the q 1 axis which is a tangent to that coordinate line at the point P. The axis q 1 and thus the vector b 1 form an angle α {\displaystyle \alpha } with the Cartesian x axis and the Cartesian basis vector e 1 .

  5. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line". However, in most geometries (including Euclidean) a line is typically a primitive (undefined) object type , so such visualizations will not necessarily be appropriate.

  6. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    The projective linear group of n-space = (+) has (n + 1) 2 − 1 dimensions (because it is (,) = ((+,)), projectivization removing one dimension), but in other dimensions the projective linear group is only 2-transitive – because three collinear points must be mapped to three collinear points (which is not a restriction in the projective line ...

  7. Lami's theorem - Wikipedia

    en.wikipedia.org/wiki/Lami's_theorem

    In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  9. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so (3) to its Lie group SO(3) .