Search results
Results From The WOW.Com Content Network
Partial leverage (PL) is a measure of the contribution of the individual independent variables to the total leverage of each observation. That is, PL is a measure of how h i i {\displaystyle h_{ii}} changes as a variable is added to the regression model.
Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation.
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Leverage (statistics)#Definition and interpretations
Various methods have been proposed for measuring influence. [3] [4] Assume an estimated regression = +, where is an n×1 column vector for the response variable, is the n×k design matrix of explanatory variables (including a constant), is the n×1 residual vector, and is a k×1 vector of estimates of some population parameter .
In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...
the regression (not residual) degrees of freedom in linear models are "the sum of the sensitivities of the fitted values with respect to the observed response values", [11] i.e. the sum of leverage scores. One way to help to conceptualize this is to consider a simple smoothing matrix like a Gaussian blur, used to mitigate data noise. In ...
A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .
In the bottom-right graph, smoothed profiles of the previous graphs are rescaled, superimposed and compared with a normal distribution (black curve). Main article: Central limit theorem The central limit theorem states that under certain (fairly common) conditions, the sum of many random variables will have an approximately normal distribution.