Ad
related to: orthogonal techniques
Search results
Results From The WOW.Com Content Network
Atlas Orthogonal Technique is an upper cervical chiropractic treatment technique created by Frederick M. Vogel and Roy W. Sweat in 1979. It is a non-invasive technique that uses a percussion "Atlas Orthogonal instrument" in attempts to change ("adjust") the position of the atlas.
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
Orthogonal array testing is a systematic and statistically-driven black-box testing technique employed in the field of software testing. [ 1 ] [ 2 ] This method is particularly valuable in scenarios where the number of inputs to a system is substantial enough to make exhaustive testing impractical.
OFDM has become an interesting technique for power line communications (PLC). In this area of research, a wavelet transform is introduced to replace the DFT as the method of creating orthogonal frequencies. This is due to the advantages wavelets offer, which are particularly useful on noisy power lines. [57]
One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...