Search results
Results From The WOW.Com Content Network
Analytic continuation of natural logarithm (imaginary part) Analytic continuation is a technique to extend the domain of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.
In analytic geometry, a truncus is a curve in the Cartesian plane consisting of all points (x,y) satisfying an equation of the form . A mathematical graph of the basic truncus formula, marked in blue, with domain and range both restricted to [-5, 5].
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula: [1] = + = + = ().
In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points. They were first defined by Edelsbrunner, Kirkpatrick & Seidel (1983) .
The superformula is a generalization of the superellipse and was proposed by Johan Gielis in 2003. [1] Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
In probability theory and statistics, a shape parameter (also known as form parameter) [1] is a kind of numerical parameter of a parametric family of probability distributions [2] that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter).