When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In a gravitational two-body problem with negative energy, both bodies follow similar elliptic orbits with the same orbital period around their common barycenter. The relative position of one body with respect to the other also follows an elliptic orbit. Examples of elliptic orbits include Hohmann transfer orbits, Molniya orbits, and tundra orbits.

  3. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    The apsides are the orbital points farthest (apoapsis) and closest (periapsis) from its primary body. The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit. Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse. Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by large

  5. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    where E is the total orbital energy, L is the angular momentum, m rdc is the reduced mass, and the coefficient of the inverse-square law central force such as in the theory of gravity or electrostatics in classical physics: = (is negative for an attractive force, positive for a repulsive one; related to the Kepler problem)

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The orbit of every planet is an ellipse with the Sun at one of the two foci. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Kepler published the first two laws in 1609 and the third ...

  7. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    The orbital equation can be derived from the Hamilton–Jacobi equation. [15] The advantage of this approach is that it equates the motion of the particle with the propagation of a wave, and leads neatly into the derivation of the deflection of light by gravity in general relativity, through Fermat's principle. The basic idea is that, due to ...

  8. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr model and quantum mechanics differ, and measurements of the Stark effect under high field strengths helped confirm the correctness of ...

  9. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.