When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    Then f : XY is continuous but its graph is not closed in X × Y. [4] If X is any space then the identity map Id : XX is continuous but its graph, which is the diagonal Gr Id := { (x, x) : xX }, is closed in X × X if and only if X is Hausdorff. [7] In particular, if X is not Hausdorff then Id : XX is continuous but not closed.

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    Theorem [7] [8] — A linear map between two F-spaces (e.g. Banach spaces) is continuous if and only if its graph is closed. The theorem is a consequence of the open mapping theorem ; see § Relation to the open mapping theorem below (conversely, the open mapping theorem in turn can be deduced from the closed graph theorem).

  4. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space ...

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A function : between two topological spaces X and Y is continuous if for every open set , the inverse image = {| ()} is an open subset of X. That is, f is a function between the sets X and Y (not on the elements of the topology T X {\displaystyle T_{X}} ), but the continuity of f depends on the topologies used on X and Y .

  6. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved. Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere ...

  7. Tietze extension theorem - Wikipedia

    en.wikipedia.org/wiki/Tietze_extension_theorem

    Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

  8. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  9. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  1. Related searches is a graph continuous hole called the y value of z is 4 8 x 10 7 in scientific notation

    closed graphs wikipediaclosed graph definition
    closed graph theorem mathclosed graph properties