When.com Web Search

  1. Ads

    related to: solving least square using qr

Search results

  1. Results From The WOW.Com Content Network
  2. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Cases and definitions [ edit ]

  3. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The numerical methods for linear least squares are important because linear regression models are among the most important types of model, both as formal statistical models and for exploration of data-sets. The majority of statistical computer packages contain

  4. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. Numerical linear algebra - Wikipedia

    en.wikipedia.org/wiki/Numerical_linear_algebra

    [1]: 84 The fact that least squares solutions can be produced by the QR and SVD factorizations means that, in addition to the classical normal equations method for solving least squares problems, these problems can also be solved by methods that include the Gram-Schmidt algorithm and Householder methods.

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .