When.com Web Search

  1. Ads

    related to: first order reaction chemistry formula

Search results

  1. Results From The WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The rate is first-order in one reactant (ethyl acetate), and also first-order in imidazole, which as a catalyst does not appear in the overall chemical equation. Another well-known class of second-order reactions are the S N 2 (bimolecular nucleophilic substitution) reactions, such as the reaction of n-butyl bromide with sodium iodide in acetone :

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  5. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...

  6. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Chemical reactions: The rates of certain types of chemical reactions depend on the concentration of one or another reactant. Reactions whose rate depends only on the concentration of one reactant (known as first-order reactions) consequently follow exponential decay. For instance, many enzyme-catalyzed reactions behave this way.

  7. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  8. Thiele modulus - Wikipedia

    en.wikipedia.org/wiki/Thiele_modulus

    Then the Thiele modulus for a first order reaction is: = From this relation it is evident that with large values of , the rate term dominates and the reaction is fast, while slow diffusion limits the overall rate. Smaller values of the Thiele modulus represent slow reactions with fast diffusion.

  9. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]