Search results
Results From The WOW.Com Content Network
The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a pea-shaped structure located below the hypothalamus), and the adrenal (also called "suprarenal ...
The hypothalamic–pituitary–somatotropic axis (HPS axis), or hypothalamic–pituitary–somatic axis, also known as the hypothalamic–pituitary–growth axis, is a hypothalamic–pituitary axis which includes the secretion of growth hormone (GH; somatotropin) from the somatotropes of the pituitary gland into the circulation and the subsequent stimulation of insulin-like growth factor 1 ...
The HPG axis plays a critical part in the development and regulation of a number of the body's systems, such as the reproductive and immune systems. Fluctuations in this axis cause changes in the hormones produced by each gland and have various local and systemic effects on the body. The axis controls development, reproduction, and aging in ...
The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right).
Anterior pituitary is an amalgam of hormone producing glandular cells. There are conditions related to the limbic system which regulate the hormone release. And also thalamus, with pain. Many of these stimuli come from the senses of the subject. The temperature control can be found in the hypothalamus. There is also regulation of water balance.
The hypothalamic–pituitary–thyroid axis (HPT axis for short, a.k.a. thyroid homeostasis or thyrotropic feedback control) is part of the neuroendocrine system responsible for the regulation of metabolism and also responds to stress. As its name suggests, it depends upon the hypothalamus, the pituitary gland, and the thyroid gland.
Dogs have ear mobility that allows them to rapidly pinpoint the exact location of a sound. Eighteen or more muscles can tilt, rotate, raise, or lower a dog's ear. A dog can identify a sound's location much faster than a human can, as well as hear sounds at four times the distance. [41] Dogs can lose their hearing from age or an ear infection. [42]
The posterior pituitary consists mainly of neuronal projections of magnocellular neurosecretory cells extending from the supraoptic and paraventricular nuclei of the hypothalamus. These axons store and release neurohypophysial hormones oxytocin and vasopressin into the neurohypophyseal capillaries, from there they get into the systemic ...