When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include:

  3. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  4. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  5. Hankel contour - Wikipedia

    en.wikipedia.org/wiki/Hankel_contour

    The contour is traversed in the positively-oriented sense, meaning that the circle around the origin is traversed counter-clockwise. Use of Hankel contours is one of the methods of contour integration. This type of path for contour integrals was first used by Hermann Hankel in his investigations of the Gamma function.

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Integration around a closed curve in the clockwise sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral): ∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ = − {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} ∂ S {\displaystyle ...

  7. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  8. Jordan's lemma - Wikipedia

    en.wikipedia.org/wiki/Jordan's_lemma

    The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.

  9. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Siegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.