Search results
Results From The WOW.Com Content Network
With the n-th polynomial normalized to give P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [3] = [′ ()]. Some low-order quadrature rules are tabulated below (over interval [−1, 1] , see the section below for other intervals).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The figure on the right was created using A = 1, x 0 = 0, y 0 = 0, σ x = σ y = 1. The volume under the Gaussian function is given by V = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = 2 π A σ X σ Y . {\displaystyle V=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }f(x,y)\,dx\,dy=2\pi A\sigma _{X}\sigma _{Y}.}
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.