Search results
Results From The WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
Conformational isomerism is a form of isomerism that describes the phenomenon of molecules with the same structural formula but with different shapes due to rotations about one or more bonds. [12] [13] Different conformations can have different energies, can usually interconvert, and are very rarely isolatable.
Tris(acetylacetonato)cobalt(III) is prepared by the reaction of cobalt(II) carbonate and acetylacetone in the presence of hydrogen peroxide: [3]. 2 CoCO 3 + 6 CH 3 COCH 2 COCH 3 + H 2 O 2 → 2 Co(O 2 C 3 Me 2 H) 3 + 2 CO 2 + 4 H 2 O
Dialkyl peroxides, e.g., dicumyl peroxide, are synthesized by addition of hydrogen peroxide to alkenes or by O-alkylation of hydroperoxides. Diacyl peroxides are typically prepared by treating hydrogen peroxide with acid chlorides or acid anhydrides in the presence of base: [1] H 2 O 2 + 2 RCOCl → (RCO 2) 2 + 2 HCl H 2 O 2 + (RCO) 2 O → ...
All three isomers have the chemical formula C 6 H 6 O 2. ... Overall, the carbonyl group (C=O) is oxidized, and the hydrogen peroxide is reduced. See also
Fenton's reagent is a solution of hydrogen peroxide (H 2 O 2) and an iron catalyst (typically iron(II) sulfate, FeSO 4). [1] It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene and tetrachloroethylene (perchloroethylene).
Many industrial peroxides are produced using hydrogen peroxide. Reactions with aldehydes and ketones yield a series of compounds depending on conditions. Specific reactions include addition of hydrogen peroxide across the C=O double bond: R 2 C=O + H 2 O 2 → R 2 C(OH)OOH. In some cases, these hydroperoxides convert to give cyclic diperoxides: