Search results
Results From The WOW.Com Content Network
Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, [5] is an inorganic compound with the formula Na B H 4 (sometimes written as Na[BH 4]). It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodium borohydride is a reducing agent that finds application in papermaking and dye ...
Since sodium cyanoborohydride is a mild reducing agent, it gives good chemoselectivity for reaction with certain functional groups in the presence of others. For example, sodium cyanoborohydride is generally incapable of reducing amides, ethers, esters and lactones, nitriles, or epoxides. [8]
Some amides can be reduced to aldehydes in the Sonn-Müller method, but most routes to aldehydes involve a well-chosen organometallic reductant. Lithium aluminum hydride reduces an excess of N,N-disubstituted amides to an aldehyde: [citation needed] R(CO)NRR' + LiAlH 4 → RCHO + HNRR' With further reduction the alcohol is obtained.
Since, aldehydes reduce more easily than ketones, they require milder reagents and milder conditions. At the other extreme, carboxylic acids, amides, and esters are poorly electrophilic and require strong reducing agents. [17] The idealized equation for the reduction of a ketone by sodium borohydride is: 4 RCOR' + NaBH 4 → NaB(OCHRR') 4
The intermediate imine can be isolated or reacted in-situ with a suitable reducing agent (e.g., sodium borohydride) to produce the amine product. [2] Intramolecular reductive amination can also occur to afford a cyclic amine product if the amine and carbonyl are on the same molecule of starting material. [4]
The solid (ice) has lower density than the liquid, so ice floats on the liquid. This is why bodies of water freeze over but do not freeze solid (from the bottom up). If ice were denser than liquid water (as is true for nearly all other compounds), then large bodies of liquid would slowly freeze solid, which would not be conducive to the ...
The rules state each oxygen is covalently bonded to two hydrogen atoms, and that the oxygen atom in each water molecule forms two hydrogen bonds with other water molecules, so that there is precisely one hydrogen between each pair of oxygen atoms. [2]
Anhydrous carboxylic acids form dimers by hydrogen bonding of the acidic hydrogen and the carbonyl oxygen. For example, acetic acid forms a dimer in the gas phase, where the monomer units are held together by hydrogen bonds. [3] Many OH-containing molecules form dimers, e.g. the water dimer.