Search results
Results From The WOW.Com Content Network
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In mathematics, a fundamental matrix of a system of n homogeneous linear ordinary differential equations ˙ = () is a matrix-valued function () whose columns are linearly independent solutions of the system. [1]
The equation is named after Jacopo Riccati (1676–1754). [1] More generally, the term Riccati equation is used to refer to matrix equations with an analogous quadratic term, which occur in both continuous-time and discrete-time linear-quadratic-Gaussian control.
Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix , the matrix product J ( x ) ⋅ h is another displacement vector, that is the best linear approximation of the change of f in a neighborhood of x , if f ( x ) is differentiable ...