Search results
Results From The WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder. [2]
It's a free compiler, though it also has commercial add-ons (e.g. for hiding source code). Numba is used from Python, as a tool (enabled by adding a decorator to relevant Python code), a JIT compiler that translates a subset of Python and NumPy code into fast machine code. Pythran compiles a subset of Python 3 to C++ . [165]
If the remainder is equal to 0 then use 0 as the check digit, and if not 0 subtract the remainder from 10 to derive the check digit. A GS1 check digit calculator and detailed documentation is online at GS1's website. [5] Another official calculator page shows that the mechanism for GTIN-13 is the same for Global Location Number/GLN. [6]
00000000001110 100 1011 00000000000101 100 101 1 ----- 00000000000000 000 <--- remainder The following Python code outlines a function which will return the initial CRC remainder for a chosen input and polynomial, with either 1 or 0 as the initial padding. Note that this code works with string inputs rather than raw numbers:
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.