Ads
related to: stationary anode x ray tube laser beams costxometry.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Solid-anode microfocus X-ray tubes are in principle very similar to the Coolidge tube, but with the important distinction that care has been taken to be able to focus the electron beam into a very small spot on the anode. Many microfocus X-ray sources operate with focus spots in the range 5-20 μm, but in the extreme cases spots smaller than 1 ...
The simplest and cheapest variety of sealed X-ray tube has a stationary anode (the Crookes tube) and runs with ~2 kW of electron beam power. The more expensive variety has a rotating-anode type source that runs with ~14 kW of e-beam power.
In EBCT, the X-ray tube itself is large and stationary, and partially surrounds the imaging circle. Rather than moving the tube itself, electron-beam focal point (and hence the X-ray source point) is rapidly swept along a tungsten anode in the tube, tracing a large circular arc on its inner surface.
The basic components of a typical electron-beam processing device include: [1] an electron gun (consisting of a cathode, grid, and anode), used to generate and accelerate the primary beam; and, a magnetic optical (focusing and deflection) system, used for controlling the way in which the electron beam impinges on the material being processed ...
In conventional CT machines, an X-ray tube and detector are physically rotated behind a circular shroud (see the image above right). An alternative, short lived design, known as electron beam tomography (EBT), used electromagnetic deflection of an electron beam within a very large conical X-ray tube and a stationary array of detectors to achieve very high temporal resolution, for imaging of ...
A typical superficial X-ray energy might be 100 kVp per 3 mmAl – "100 kilovolts applied to the X-ray tube with a measured half-value layer of 3 millimeters of aluminum". The half-value layer for orthovoltage beams is more typically measured using copper; a typical orthovoltage energy is 250 kVp per 2 mmCu. [7]